Tag Archives: Solar Eclipse

Lunar and Solar Eclipses of October 2014

Interestingly, there is both a lunar and a solar eclipse this month. The relationship between these events provides an opportunity gain a deeper understanding of eclipses, and it is an opportunity to explore some characteristics of the Moon’s orbit about the Earth.

Let’s start with the Sun’s role. The Sun’s path among the stars defines the ecliptic. The Sun’s location in the sky, and on the ecliptic can be computed rather precisely for any given date or time. The ecliptic can be found on most star charts. Note that the ecliptic becomes a full 360° circle when the left (west) and right (east) edges of a full sky chart are bent into a cylinder so that the two ends of the ecliptic meet.

A definition of Full and New Moon is essential to understanding solar and lunar eclipses. The Full Moon (the entire face of the Moon is lit) occurs when the Sun and Moon are opposite one another when seen from Earth. In other words, the Earth is located between the Sun and the Moon. The New Moon (none of the face of the Moon is lit) occurs when the Moon is located between the Sun and the Earth. The lit side of the Moon is facing the Sun, and the dark side is facing the Earth.

The Moon’s orbit is inclined to the ecliptic by about 5.5°, which means three things: 1) half of the Moon’s orbit is above the ecliptic, 2) half of the Moon’s orbit is below the ecliptic, and 3) the Moon crosses the ecliptic twice in each orbit. These two points are called nodes. The ascending marks the point at which the Moon crosses the ecliptic headed north, and the descending node marks the south-bound crossing. These nodes progress about the ecliptic once in about 18.6 years, which is why series of lunar and solar eclipses repeat ever 18.6 years.

If the Sun happens to be located at the point of the Moon’s crossing of the ecliptic at the time of the crossing, an eclipse will occur. Since the Sun’s disk (1/2° in diameter) occupies only about 1/720th of the 360° ecliptic, and the Moon may be as much as 5.5° above or below the ecliptic, an eclipse is a rather rare event.

A lunar eclipse occurs when the full Moon passes through the Earth’s shadow. Given that the Earth is between the Sun and Moon at Full Moon, it stands to reason that the Earth’s shadow will fall upon the Moon, if the full Moon happens to be crossing the ecliptic.

A solar eclipse occurs when the new Moon casts its shadow upon the Earth’s surface. This stands to reason given that at New Moon, the Moon is located between the Sun and the Earth. To an observer at a fixed location on the surface of the Earth, the Moon’s dark disk is seen to move across the Sun’s face, either partially, or fully blocking out the Sun at the eclipse’s maximum.

October 8th – Total Lunar Eclipse
This eclipse will begin when the Moon enters the prenumbra (lightest part of the Earth’s shadow) at 4:45am. The Moon enters the umbra (the darkest part of the Earth’s shadow) at 5:15am, and Moon is fully within the umbra (total eclipse) at 6:25am. Unfortunately, the Sun rises and the Moon sets before the eclipse ends.
http://en.wikipedia.org/wiki/Lunar_eclipse

October 23rd – Partial Solar Eclipse
This month’s solar eclipse is “partial,” because the Moon’s dark disk will not fully cover the face of the Sun. The eclipse will begin when the Moon first begins to cover the Sun’s face at 5:52pm, and it will reach its maximum coverage of the Sun’s face at 6:17pm, which is sunset.
http://en.wikipedia.org/wiki/Solar_eclipse